skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Close, Eleanor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Culturally relevant pedagogy (CRP) seeks to improve equity in instruction and leverage students’ experiences by promoting academic success, cultural competence, and sociopolitical consciousness. We examine instructors’ perceptions of student identity to understand the ways undergraduate mathematics instructors are enacting or experiencing barriers to enacting CRP. Interviews with ten mathematics faculty at Hispanic-serving institutions identified two potential barriers to enacting CRP: first, instructors’ hesitance to communicate about student identity, especially with respect to race and gender; and second, instructors holding epistemologies that mathematics is culture-free. Despite these barriers, almost all interviewees implemented the academic success tenet of CRP. These barriers may prevent instruction around cultural competence and sociopolitical consciousness, which are the two tenets that most capitalize on students’ informal knowledge, identities, and cultural experiences. Changing discourse by taking more risks in conversation and inviting a more diverse range of people to the undergraduate mathematics community are potential ways to address these barriers. 
    more » « less
  2. Abstract Background The growing understanding of the oppressive inequities that exist in postsecondary education has led to an increasing need for culturally relevant pedagogy. Researchers have found evidence that beliefs about the nature of knowledge predict pedagogical practices. Culturally relevant pedagogy supports students in ways that leverage students’ own cultures through three tenets: academic success, cultural competence, and sociopolitical consciousness. If STEM practitioners believe that their disciplines are culture-free, they may not enact culturally relevant pedagogy in their courses. We investigated how and in what forms 40 faculty from mathematics, physics, chemistry, and biology departments at Hispanic-Serving Institutions enacted culturally relevant pedagogy. We used the framework of practical rationality to understand how epistemological beliefs about the nature of their discipline combined with their institutional context impacted instructors’ decision to enact practices aligning with the three tenets of culturally relevant pedagogy. Results In total, 35 instructors reported using practices that aligned with the academic success tenet, nine instructors with the cultural competence tenet, and one instructor with the sociopolitical consciousness tenet. Instructors expressed and even lauded their disciplines’ separation from culture while simultaneously expressing instructional decisions that aligned with culturally relevant pedagogy. Though never asked directly, six instructors made statements reflecting a “culture-free” belief about knowledge in their discipline such as “To me, mathematics has no color.” Five of those instructors also described altering their teaching in ways that aligned with the academic success tenet. The framework of practical rationality helped explain how the instructors’ individual obligation (to the needs of individual students) and interpersonal obligation (to the social environment of the classroom) played a role in those decisions. Conclusions Instructors’ ability to express two contradictory views may indicate that professional development does not have to change an instructor’s epistemological beliefs about their discipline to convince them of the value of enacting culturally relevant pedagogy. We propose departmental changes that could enable instructors to decide to cultivate students’ cultural competence and sociopolitical consciousness. Our findings highlight the need for future research investigating the impacts of culturally relevant pedagogical content knowledge on students’ experiences. 
    more » « less
  3. Research-based assessments (RBAs) measure how well a course achieves discipline-specific outcomes. Educators can use outcomes from RBAs to guide instructional choices and to request resources to implement and sustain instructional transformations. One challenge for using RBAs, however, is a lack of comparative data, particularly given the skew in the research literature toward calculus-based courses at highly selective institutions. In this article, we provide a large-scale dataset and several tools educators in introductory physics courses can use to inform how well their courses foster student conceptual understanding of Newtonian physics. The supplemental materials include this dataset and these tools. Educators and administrators will often target courses with high drop, withdrawal, and failure rates for transformations to student-centered instructional strategies. RBAs and the comparative tools presented herein allow educators to address critiques that the course transformations made the courses “easier” by showing that the transformed course supported physics learning compared to similar courses at other institutions. Educators can also use the tools to track course efficacy over time. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Research-based assessments (RBAs; e.g., the Force Concept Inventory) that measure student content knowledge, attitudes, or identities have played a major role in transforming physics teaching practices. RBAs offer instructors a standardized method for empirically investigating the efficacy of their instructional practices and documenting the impacts of course transformations. Unlike course exams, the common usage of standardized RBAs across institutions uniquely supports instructors to compare their student outcomes over time or against multi-institutional data sets. While the number of RBAs and RBA-using instructors has increased over the last three decades, barriers to administering RBAs keep many physics instructors from using them.1,2 To mitigate these barriers, we have created full-service online RBA platforms (i.e., the Learning About STEM Student Outcomes [LASSO],3 Colorado Learning Attitudes About Science Survey for Experimental Physics [E-CLASS],4 and Physics Lab Inventory of Critical thinking [PLIC]5 platforms) that host, administer, score, and analyze RBAs. These web-based platforms can make it easier for instructors to use RBAs, especially as many courses have been forced to transition to online instruction. We hope that this editorial can serve as a guide for instructors considering administering RBAs online. In what follows, we examine common barriers to using RBAs, how online administration can remove those barriers, and the research into online administration of RBAs. In the supplementary material,6 we also include a practical how-to for administering RBAs online and sample student email wording. 
    more » « less
  6. Research-based assessments (RBAs), such as the Force Concept Inventory, have played central roles in many course transformations from traditional lecture-based instruction to research-based teaching methods. In order to support instructors in assessing their courses, the online Learning About STEM Student Outcomes (LASSO) platform simplifies administering, scoring, and interpreting RBAs. Reducing the barriers to using RBAs will support more instructors in objectively assessing the efficacy of their courses and, subsequently, transforming their courses to improve student outcomes. The purpose of this study was to investigate the extent to which RBAs administered online and outside of class with the LASSO platform provided equivalent data to tradi- tional paper and pencil tests administered in class. Research indicates that these two modes of administering assessments provide equivalent data for graded exams that are administered in class. However, little research has focused on ungraded (low-stakes) exams that are administered outside of class. We used an experimental design to investigate the differences between these two test modes. Results indicated that the LASSO platform provided equivalent data to paper and pencil tests. 
    more » « less
  7. This study investigates differences in student participation rates between in-class and online administrations of research-based assessments. A sample of 1,310 students from 25 sections of 3 different introductory physics courses over two semesters were instructed to complete the CLASS attitudinal survey and the concept inventory relevant to their course, either the FCI or the CSEM. Each student was randomly assigned to take one of the surveys in class and the other survey online at home using the Learning About STEM Student Outcomes (LASSO) platform. Results indicate large variations in participation rates across both test conditions (online and in class). A hierarchical generalized linear model (HGLM) of the student data utilizing logistic regression indicates that student grades in the course and faculty assessment administration practices were both significant predictors of student participation. When the recommended online assessments administration practices were implemented, participation rates were similar across test conditions. Implications for student and course assessment methodologies will be discussed. 
    more » « less
  8. This study investigates differences in student responses to in-class and online administrations of the Force Concept Inventory (FCI), Conceptual Survey of Electricity and Magnetism (CSEM), and the Colorado Learning Attitudes about Science Survey (CLASS). Close to 700 physics students from 12 sections of three different courses were instructed to complete the concept inventory relevant to their course, either the FCI or CSEM, and the CLASS. Each student was randomly assigned to take one of the surveys in class and the other survey online using the LA Supported Student Outcomes (LASSO) system hosted by the Learning Assistant Alliance (LAA). We examine how testing environments and instructor practices affect participation rates and identify best practices for future use. 
    more » « less